Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
J Immunol ; 210(4): 475-485, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2201459

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteric coronavirus that causes severe watery diarrhea and even death in piglets. The neonatal Fc receptor (FcRn) is the only transport receptor for IgG. FcRn expressed by intestinal epithelial cells can transport IgG from breast milk to piglets to provide immune protection. Previous studies have shown that viral infection affects FcRn expression. In this study, we showed for the first time, to our knowledge, that FcRn expression can be influenced by methyltransferases. In addition, we found that PEDV inhibited FcRn protein synthesis in porcine small intestinal epithelial cells postinfection. Then, we found that PEDV interfered with the transcription of genes through aberrant methylation modification of the FcRn promoter. DNA methyltransferase 3b (DNMT3b) has been implicated in this process. Using a series of PEDV structural and nonstructural protein (nsp) expression plasmids, we showed that nsp13 plays an important role in this aberrant methylation modification. PEDV nsp13 can affect the NF-κB canonical pathway and promote DNMT3b protein expression by facilitating p65 protein binding to chromatin. PEDV caused aberrant methylation of the FcRn promoter via DNMT3b. The same phenomenon was found in animal experiments with large white piglets. IgG transcytosis demonstrated that PEDV nsp13 can inhibit bidirectional IgG transport by FcRn. In addition, the core region of nsp13 (230-597 aa) is critical for FcRn inhibition. Taken together, to our knowledge, our findings revealed a novel immune escape mechanism of PEDV and shed new light on the design and development of vaccines and drugs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , NF-kappa B/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Transdução de Sinais , Imunoglobulina G
2.
Viruses ; 12(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: covidwho-830212

RESUMO

Porcine deltacoronavirus (PDCoV) is a porcine enteropathogenic coronavirus that causes watery diarrhea, vomiting, and frequently death in piglets, causing serious economic losses to the pig industry. The strain CHN-JS-2017 was isolated and identified by cytopathology, immunofluorescence assays, transmission electron microscopy, and sequence analysis. A nucleotide sequence alignment showed that the whole genome of CHN-JS-2017 is 97.4%-99.6% identical to other PDCoV strains. The pathogenicity of the CHN-JS-2017 strain was investigated in orally inoculated five-day-old piglets; the piglets developed acute, watery diarrhea, but all recovered and survived. CHN-JS-2017 infection-induced microscopic lesions were observed, and viral antigens were detected mainly by immunohistochemical staining in the small intestine. The neonatal Fc receptor (FcRn) and polymeric immunoglobulin receptor (pIgR) are crucial immunoglobulin (Ig) receptors for the transcytosis ofimmunoglobulin G (IgG), IgA, or IgM. Importantly, CHN-JS-2017 infected five-day-old piglets could significantly down-regulate the expression of FcRn, pIgR, and nuclear factor-kappa B (NF-κB)in the intestinal mucosa. Note that the level of FcRn mRNA in the intestinal mucosa of normal piglets is positively correlated with pIgR and NF-κB. At the same time, the expressions of FcRn, pIgR, and NF-κB mRNA are also positively correlated in infected piglets. These results may help explain the immunological and pathological changes associated with porcine deltacorononirus infection.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/classificação , Antígenos de Histocompatibilidade Classe I/imunologia , Mucosa Intestinal/imunologia , Receptores Fc/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Doenças dos Suínos/virologia , Animais , Antígenos Virais/análise , Coronavirus/isolamento & purificação , Infecções por Coronavirus/imunologia , Diarreia/veterinária , Diarreia/virologia , Regulação da Expressão Gênica , Mucosa Intestinal/virologia , Intestino Delgado/imunologia , Intestino Delgado/virologia , NF-kappa B/imunologia , Filogenia , RNA Viral/análise , Alinhamento de Sequência , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/imunologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA